Optimizing Configuration Hierarchy for Continuous Media Server

Youjip Won

Server Architecture Lab. Intel Corp.

Motivation

On-Line Access of information: Is *Per Service Cost* competitive?

- Volume Data: 3GB per 110min movie
- Excessive Bandwidth

Contribution

- System Modeling and Performance Analysis in Storage Hierarchy
 - Stochasitic Modeling: Blocking Probability and Waiting Time
 - Analysis on Performance Behavior
- Optimal Configuration of Storage Hierarchy
 - Partial Configuration and Integration
 - Balanced System and Quasi Optimal Configuration

Objective

- System Modeling and Performance Analysis
- Find Optimal Configuration for Storage Hierarchy

Metrics for Server Throughput

- Expected Service Time: E(S)
- Blocking Probability: P(Block)

Hierarchical Storage

Role Model of Storage Hierarchy

	Secondary Storage	Tertiary Storage
Model I	Main Storage	Back-Up
Model II	negotiation	negotiation
Model III	Staging Purpose	Main Storage

Service Mechanism for VOD Request

File is sent to User from Secondary Storage

- File Loading: $\mathcal{T} \to \mathcal{D}(L_T \text{ sec}), \, \mathcal{D} \to \mathcal{U}(L_D \text{ sec})$
- Disk Space Reservation: $\mathcal{T} \to \mathcal{D}$ operation
- Management of Disk Space
 - Release After Service Completion
 - Extension of Residency
- File Status: Idle, On Tape, On Disk

Intra-Hierarchy Stream Transfer

 $L_{\overline{L}}$: Time for Tape to Disk File Transfer $L_{\dot{D}}$ Time for Disk to User Transfer

Service $Time = Time(\mathcal{T} \to \mathcal{D}) + Time(\mathcal{T} \to \mathcal{U})$ $\mathcal{T} \to \mathcal{D}$:

- \bullet Tape Read + Disk Write
- Buffer: To Compensate Speed Mismatch

 $\mathcal{D} \to \mathcal{U}$:

- Buffer: Determined by Scheduling Algorithm
- Pipelining
 - Disk Write + Playback: Only in Pipelining
 - Latency

Modeling of Hierarchical Storage

State Vector: $\pi = \langle F_1, \dots, F_M \rangle, F_i = \mathcal{I}|\mathcal{D}|\mathcal{T}$ Valid Operating States

$$\Pi = \{ \pi; |\pi^{\mathcal{T}}| \le N_T, |\pi^{\mathcal{T}}| + |\pi^{\mathcal{D}}| \le N_D \}$$

Transition Matrix: P

$$(\ldots, \mathcal{I}, \ldots) \xrightarrow{\lambda_i} (\ldots, \mathcal{T}, \ldots)$$

$$(\ldots, \mathcal{T}, \ldots) \qquad \xrightarrow{\frac{\overline{L}_T}{L_T}} \qquad (\ldots, \mathcal{D}, \ldots)$$

$$(\dots, \mathcal{I}, \dots) \qquad \xrightarrow{\lambda_i} \qquad (\dots, \mathcal{T}, \dots)$$

$$(\dots, \mathcal{T}, \dots) \qquad \xrightarrow{\frac{1}{L_T}} \qquad (\dots, \mathcal{D}, \dots)$$

$$(\dots, \mathcal{D}, \dots) \qquad \xrightarrow{\frac{\lambda_i}{e^{\lambda_i L_D} - 1}} \qquad (\dots, \mathcal{I}, \dots)$$

Expected Service Time: Open System's Perspective

- Request for file i: $\underbrace{P(D_i), P(T_i), P(I_i)}_{Admitted}$, and $\underbrace{P(B_i)}_{Blocked}$ $P(I_i) = \sum_{\pi_j \in \Pi} \pi_j I(I_i)$ $P(T_i) = \sum_{\pi_j \in \Pi} \pi_j I(T_i)$ $P(D_i) = \sum_{\pi_j \in \Pi} \pi_j I(D_i)$
- $P(D_i)$, $P(T_i)$, $P(I_i)$, $P(B_i)$ are Function of L_D , L_T and λ_i
- Expected Service Time of Request for file i:

$$E(S_i) = P(I_i)(L_T + L_D) + P(D_i)L_D + P(T_i)(\frac{L_T}{2} + L_D)$$

Blocking Probability: Closed System's Perspective

Congestion States

$$\Pi_{\mathcal{C}} = \{ \pi; |\pi^{\mathcal{T}}| = N_T, |\pi^{\mathcal{T}}| + |\pi^{\mathcal{D}}| = N_D \}$$

Steady State Probability: $\pi = \pi P$

P(Block) = P(Congestion)*P(Arrival of new File)

$$P(Block) = \sum_{\pi_i \in \Pi_{\mathcal{C}}} \pi_i \sum_{j \in \pi_i^{\mathcal{I}}} p_j$$

Behavior of P(Block):

Visualized with $N_T = N_D = 1, M = 1$.

Configuration of Storage Hierarchy

- Configuration $\Re = \langle N_T, N_D, \mu_T, \mu_D \rangle$
- User Profile $\Im = \langle P, \lambda \rangle$

Given \Im , μ_T , and μ_D , Find N_T^{min} and N_D^{min} with $P(Block) < \mathcal{P}$

$$P(Block) = P_{Tape\ Drive}(Block) + P_{Disk}(Block)$$

Partial Optimal Configuration for N_T^{min}

Let
$$N_D = \infty$$
.

Find
$$N_T^{min}$$
 with $\Re = \langle N_T, \infty, \mu_T, \mu_D \rangle$.

$$\overbrace{\text{How to Obtain } N_T^{min}?}$$

- Simulation
- Application of Generalized Engset Formula

Partial Optimal Configuration for N_D^{min}

Let $N_T = \infty$.

Find N_D^{min} with $\Re = \langle \infty, N_D, \mu_T, \mu_D \rangle$.

How to Obtain N_T^{min} ?

- Simulation
- Application of Generalized Engset Formula

Integration of Partial Optimal Solution

- C_T : unit cost for tape drive
- C_D : unit cost for disk

Minimize $C_T N_T + C_D N_D$.

Finding Optimal Configuration

Conjecture

The configuration $\Re = \langle N_T^{min}, N_D^{min}, \mu_T, \mu_D \rangle$ is

- Balanced
- Optimal, or Quasi Optimal

Balanced System

Bottleneck Analysis

Summary

Solution for Affordable On-Line Multimedia Service

- Hierarchical Storage Architecture
- Distributed Extension of Hierarchical Storage Architecture

Environmental Assumption

- Skewed Access Pattern
- Wide Variety of Selection
- Large Individual File Size
- Relatively Less Critical Application Environment